The first edition of the *Textbook of Medical Physiology* was written by Arthur C. Guyton almost 55 years ago. Unlike most major medical textbooks, which often have 20 or more authors, the first eight editions of the *Textbook of Medical Physiology* were written entirely by Dr. Guyton, with each new edition arriving on schedule for nearly 40 years. The *Textbook of Medical Physiology*, first published in 1956, quickly became the best-selling medical physiology textbook in the world. Dr. Guyton had a gift for communicating complex ideas in a clear and interesting manner that made studying physiology fun. He wrote the book to help students learn physiology, not to impress his professional colleagues.

I worked closely with Dr. Guyton for almost 30 years and had the privilege of writing parts of the 9th and 10th editions. After Dr. Guyton's tragic death in an automobile accident in 2003, I assumed responsibility for completing the 11th edition.

For the 12th edition of the *Textbook of Medical Physiology*, I have the same goal as for previous editions—to explain, in language easily understood by students, how the different cells, tissues, and organs of the human body work together to maintain life.

This task has been challenging and fun because our rapidly increasing knowledge of physiology continues to unravel new mysteries of body functions. Advances in molecular and cellular physiology have made it possible to explain many physiology principles in the terminology of molecular and physical sciences rather than in merely a series of separate and unexplained biological phenomena.

The *Textbook of Medical Physiology*, however, is not a reference book that attempts to provide a compendium of the most recent advances in physiology. This is a book that continues the tradition of being written for students. It focuses on the basic principles of physiology needed to begin a career in the health care professions, such as medicine, dentistry and nursing, as well as graduate studies in the biological and health sciences. It should also be useful to physicians and health care professionals who wish to review the basic principles needed for understanding the pathophysiology of human disease.

I have attempted to maintain the same unified organization of the text that has been useful to students in the past and to ensure that the book is comprehensive enough that students will continue to use it during their professional careers.

My hope is that this textbook conveys the majesty of the human body and its many functions and that it stimulates students to study physiology throughout their careers. Physiology is the link between the basic sciences and medicine. The great beauty of physiology is that it integrates the individual functions of all the body’s different cells, tissues, and organs into a functional whole, the human body. Indeed, the human body is much more than the sum of its parts, and life relies upon this total function, not just on the function of individual body parts in isolation from the others.

This brings us to an important question: How are the separate organs and systems coordinated to maintain proper function of the entire body? Fortunately, our bodies are endowed with a vast network of feedback controls that achieve the necessary balances without which we would be unable to live. Physiologists call this high level of internal bodily control homeostasis. In disease states, functional balances are often seriously disturbed and homeostasis is impaired. When even a single disturbance reaches a limit, the whole body can no longer live. One of the goals of this text, therefore, is to emphasize the effectiveness and beauty of the body’s homeostasis mechanisms as well as to present their abnormal functions in disease.

Another objective is to be as accurate as possible. Suggestions and critiques from many students, physiologists, and clinicians throughout the world have been sought and then used to check factual accuracy as well as balance in the text. Even so, because of the likelihood of error in sorting through many thousands of bits of information, I wish to issue a further request to all readers to send along notations of error or inaccuracy. Physiologists understand the importance of feedback for proper function of the human body; so, too, is feedback important for progressive improvement of a textbook of physiology. To the many persons who have already helped, I express sincere thanks.
A brief explanation is needed about several features of the 12th edition. Although many of the chapters have been revised to include new principles of physiology, the text length has been closely monitored to limit the book size so that it can be used effectively in physiology courses for medical students and health care professionals. Many of the figures have also been redrawn and are in full color. New references have been chosen primarily for their presentation of physiologic principles, for the quality of their own references, and for their easy accessibility. The selected bibliography at the end of the chapters lists papers mainly from recently published scientific journals that can be freely accessed from the PubMed internet site at http://www.ncbi.nlm.nih.gov/sites/entrez/. Use of these references, as well as cross-references from them, can give the student almost complete coverage of the entire field of physiology. The effort to be as concise as possible has, unfortunately, necessitated a more simplified and dogmatic presentation of many physiologic principles than I normally would have desired. However, the bibliography can be used to learn more about the controversies and unanswered questions that remain in understanding the complex functions of the human body in health and disease.

Another feature is that the print is set in two sizes. The material in large print constitutes the fundamental physiologic information that students will require in virtually all of their medical activities and studies.

The material in small print is of several different kinds: first, anatomic, chemical, and other information that is needed for immediate discussion but that most students will learn in more detail in other courses; second, physiologic information of special importance to certain fields of clinical medicine; and, third, information that will be of value to those students who may wish to study particular physiologic mechanisms more deeply.

I wish to express sincere thanks to many persons who have helped to prepare this book, including my colleagues in the Department of Physiology and Biophysics at the University of Mississippi Medical Center who provided valuable suggestions. The members of our faculty and a brief description of the research and educational activities of the department can be found at the web site: http://physiology.umc.edu/. I am also grateful to Stephanie Lucas and Courtney Horton Graham for their excellent secretarial services, to Michael Schenk and Walter (Kyle) Cunningham for their expert artwork, and to William Schmitt, Rebecca Grulio, Frank Morales, and the entire Elsevier Saunders team for continued editorial and production excellence.

Finally, I owe an enormous debt to Arthur Guyton for the great privilege of contributing to the Textbook of Medical Physiology, for an exciting career in physiology, for his friendship, and for the inspiration that he provided to all who knew him.

John E. Hall
Contents

UNIT I
Introduction to Physiology: The Cell and General Physiology

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>Functional Organization of the Human Body and Control of the "Internal Environment"</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cells as the Living Units of the Body</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Extracellular Fluid—The "Internal Environment"</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>"Homeostatic" Mechanisms of the Major Functional Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Control Systems of the Body</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Summary—Automaticity of the Body</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
<th>The Cell and Its Functions</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Organization of the Cell</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Physical Structure of the Cell</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Comparison of the Animal Cell with Precellular Forms of Life</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Functional Systems of the Cell</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Locomotion of Cells</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>Genetic Control of Protein Synthesis, Cell Function, and Cell Reproduction</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Genes in the Cell Nucleus</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>The DNA Code in the Cell Nucleus Is Transferred to an RNA Code in the Cell Cytoplasm—The Process of Transcription</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Other Substances in the Cell</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Control of Gene Function and Biochemical Activity in Cells</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>The DNA-Genetic System Also Controls Cell Reproduction</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Cell Differentiation</td>
<td>39</td>
</tr>
</tbody>
</table>

UNIT II
Membrane Physiology, Nerve, and Muscle

<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>Transport of Substances Through Cell Membranes</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Lipid Barrier of the Cell Membrane, and Cell Membrane Transport Proteins</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Diffusion</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>“Active Transport” of Substances Through Membranes</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 5</th>
<th>Membrane Potentials and Action Potentials</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic Physics of Membrane Potentials</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Measuring the Membrane Potential</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Resting Membrane Potential of Nerves</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Nerve Action Potential</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Roles of Other Ions During the Action Potential</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Propagation of the Action Potential</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Re-establishing Sodium and Potassium Ionic Gradients After Action Potentials Are Completed—Importance of Energy Metabolism</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Plateau in Some Action Potentials</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Rhythmicity of Some Excitable Tissues—Repetitive Discharge</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Special Characteristics of Signal Transmission in Nerve Trunks</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Excitation—The Process of Eliciting the Action Potential</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Recording Membrane Potentials and Action Potentials</td>
<td>69</td>
</tr>
</tbody>
</table>

Apoptosis—Programmed Cell Death | 40 |
Cancer | 40
CHAPTER 6
Contraction of Skeletal Muscle
- Physiologic Anatomy of Skeletal Muscle
- General Mechanism of Muscle Contraction
- Molecular Mechanism of Muscle Contraction
- Energetics of Muscle Contraction
- Characteristics of Whole Muscle Contraction

CHAPTER 7
Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Coupling
- Transmission of Impulses from Nerve Endings to Skeletal Muscle Fibers: The Neuromuscular Junction
- Molecular Biology of Acetylcholine Formation and Release
- Drugs That Enhance or Block Transmission at the Neuromuscular Junction
- Myasthenia Gravis Causes Muscle Paralysis
- Muscle Action Potential
- Excitation-Contraction Coupling

CHAPTER 8
Excitation and Contraction of Smooth Muscle
- Contraction of Smooth Muscle
- Nervous and Hormonal Control of Smooth Muscle Contraction

UNIT III
The Heart

CHAPTER 9
Cardiac Muscle; The Heart as a Pump and Function of the Heart Valves
- Physiology of Cardiac Muscle
- Cardiac Cycle
- Relationship of the Heart Sounds to Heart Pumping
- Work Output of the Heart
- Chemical Energy Required for Cardiac Contraction: Oxygen Utilization by the Heart
- Regulation of Heart Pumping

CHAPTER 10
Rhythmic Excitation of the Heart
- Specialized Excitatory and Conductive System of the Heart
- Control of Excitation and Conduction in the Heart

CHAPTER 11
The Normal Electrocardiogram
- Characteristics of the Normal Electrocardiogram
- Flow of Current Around the Heart during the Cardiac Cycle
- Electrocardiographic Leads

CHAPTER 12
Electrocardiographic Interpretation of Cardiac Muscle and Coronary Blood Flow Abnormalities: Vectorial Analysis
- Principles of Vectorial Analysis of Electrocardiograms
- Vectorial Analysis of the Normal Electrocardiogram
- Mean Electrical Axis of the Ventricular QRS—and Its Significance
- Conditions That Cause Abnormal Voltages of the QRS Complex
- Prolonged and Bizarre Patterns of the QRS Complex
- Current of Injury
- Abnormalities in the T Wave

CHAPTER 13
Cardiac Arrhythmias and Their Electrocardiographic Interpretation
- Abnormal Sinus Rhythms
- Abnormal Rhythms That Result from Block of Heart Signals Within the Intracardiac Conduction Pathways
- Premature Contractions
- Paroxysmal Tachycardia
- Ventricular Fibrillation
- Atrial Fibrillation
- Atrial Flutter
- Cardiac Arrest

UNIT IV
The Circulation

CHAPTER 14
Overview of the Circulation; Biophysics of Pressure, Flow, and Resistance
- Physical Characteristics of the Circulation
- Basic Principles of Circulatory Function
- Interrelationships of Pressure, Flow, and Resistance
Contents

CHAPTER 15
Vascular Distensibility and Functions of the Arterial and Venous Systems 167
 - Vascular Distensibility 167
 - Arterial Pressure Pulsations 168
 - Veins and Their Functions 171

CHAPTER 16
The Microcirculation and Lymphatic System: Capillary Fluid Exchange, Interstitial Fluid, and Lymph Flow 177
 - Structure of the Microcirculation and Capillary System 177
 - Flow of Blood in the Capillaries—Vasomotion 178
 - Exchange of Water, Nutrients, and Other Substances Between the Blood and Interstitial Fluid 179
 - Interstium and Interstitial Fluid 180
 - Fluid Filtration Across Capillaries Is Determined by Hydrostatic and Colloid Osmotic Pressures, as Well as Capillary Filtration Coefficient 181
 - Lymphatic System 186

CHAPTER 17
Local and Humoral Control of Tissue Blood Flow 191
 - Local Control of Blood Flow in Response to Tissue Needs 191
 - Mechanisms of Blood Flow Control 191
 - Humoral Control of the Circulation 199

CHAPTER 18
Nervous Regulation of the Circulation, and Rapid Control of Arterial Pressure 201
 - Nervous Regulation of the Circulation 201
 - Role of the Nervous System in Rapid Control of Arterial Pressure 204
 - Special Features of Nervous Control of Arterial Pressure 209

CHAPTER 19
Role of the Kidneys in Long-Term Control of Arterial Pressure and in Hypertension: The Integrated System for Arterial Pressure Regulation 213
 - Renal–Body Fluid System for Arterial Pressure Control 213
 - The Renin-Angiotensin System: Its Role in Arterial Pressure Control 220
 - Summary of the Integrated, Multifaceted System for Arterial Pressure Regulation 226

CHAPTER 20
Cardiac Output, Venous Return, and Their Regulation 229
 - Normal Values for Cardiac Output at Rest and During Activity 229
 - Control of Cardiac Output by Venous Return—Role of the Frank-Starling Mechanism of the Heart 229
 - Pathologically High or Low Cardiac Outputs 232
 - Methods for Measuring Cardiac Output 240

CHAPTER 21
Muscle Blood Flow and Cardiac Output During Exercise; the Coronary Circulation and Ischemic Heart Disease 243
 - Blood Flow Regulation in Skeletal Muscle at Rest and During Exercise 243
 - Coronary Circulation 246

CHAPTER 22
Cardiac Failure 255
 - Circulatory Dynamics in Cardiac Failure 255
 - Unilateral Left Heart Failure 259
 - Low-Output Cardiac Failure—Cardiogenic Shock 259
 - Edema in Patients with Cardiac Failure 259
 - Cardiac Reserve 261

CHAPTER 23
Heart Valves and Heart Sounds; Valvular and Congenital Heart Defects 265
 - Heart Sounds 265
 - Abnormal Circulatory Dynamics in Valvular Heart Disease 268
 - Abnormal Circulatory Dynamics in Congenital Heart Defects 269
 - Use of Extracorporeal Circulation During Cardiac Surgery 271
 - Hypertrophy of the Heart in Valvular and Congenital Heart Disease 272

CHAPTER 24
Circulatory Shock and Its Treatment 273
 - Physiologic Causes of Shock 273
 - Shock Caused by Hypovolemia—Hemorrhagic Shock 274
 - Neurogenic Shock—Increased Vascular Capacity 279
 - Anaphylactic Shock and Histamine Shock 280
 - Septic Shock 280
Contents

Control of Renal Calcium Excretion and Extracellular Calcium Ion Concentration 367
Control of Renal Magnesium Excretion and Extracellular Magnesium Ion Concentration 369
Integration of Renal Mechanisms for Control of Extracellular Fluid 370
Importance of Pressure Natriuresis and Pressure Diuresis in Maintaining Body Sodium and Fluid Balance 371
Distribution of Extracellular Fluid Between the Interstitial Spaces and Vascular System 373
Nervous and Hormonal Factors Increase the Effectiveness of Renal–Body Fluid Feedback Control 373
Integrated Responses to Changes in Sodium Intake 376
Conditions That Cause Large Increases in Blood Volume and Extracellular Fluid Volume 376
Conditions That Cause Large Increases in Extracellular Fluid Volume but with Normal Blood Volume 377

CHAPTER 30
Acid-Base Regulation 379
H⁺ Concentration Is Precisely Regulated 379
Acids and Bases—Their Definitions and Meanings 379
Defending Against Changes in H⁺ Concentration: Buffers, Lungs, and Kidneys 380
Buffering of H⁺ in the Body Fluids 380
Bicarbonate Buffer System 381
Phosphate Buffer System 383
Proteins Are Important Intracellular Buffers 383
Respiratory Regulation of Acid-Base Balance 384
Renal Control of Acid-Base Balance 385
Secretion of H⁺ and Reabsorption of HCO⁻₃ by the Renal Tubules 386
Combination of Excess H⁺ with Phosphate and Ammonia Buffers in the Tubule Generates “New” HCO⁻₃ 388
Quantifying Renal Acid-Base Excretion 389
Renal Correction of Acidosis—Increased Excretion of H⁺ and Addition of HCO⁻₃ to the Extracellular Fluid 391
Renal Correction of Alkalosis—Decreased Tubular Secretion of H⁺ and Increased Excretion of HCO⁻₃ 391
Clinical Causes of Acid-Base Disorders 392
Treatment of Acidosis or Alkalosis 393
Clinical Measurements and Analysis of Acid-Base Disorders 393

CHAPTER 31
Diuretics, Kidney Diseases 397
Diuretics and Their Mechanisms of Action 397
Kidney Diseases 399
Acute Renal Failure 399
Chronic Renal Failure: An Irreversible Decrease in the Number of Functional Nephrons 401
Specific Tubular Disorders 408
Treatment of Renal Failure by Transplantation or by Dialysis with an Artificial Kidney 409

UNIT VI
Blood Cells, Immunity, and Blood Coagulation

CHAPTER 32
Red Blood Cells, Anemia, and Polycythemia 413
Red Blood Cells (Erythrocytes) 413
Anemias 420
Polycythemia 421

CHAPTER 33
Resistance of the Body to Infection: I. Leukocytes, Granulocytes, the Monocyte-Macrophage System, and Inflammation 423
Leukocytes (White Blood Cells) 423
Neutrophils and Macrophages Defend Against Infections 425
Monocyte-Macrophage Cell System (Reticuloendothelial System) 426
Inflammation: Role of Neutrophils and Macrophages 428
Eosinophils 430
Basophils 431
Leukopenia 431
Leukemias 431

CHAPTER 34
Resistance of the Body to Infection: II. Immunity and Allergy 433
Acquired (Adaptive) Immunity 433
Allergy and Hypersensitivity 443

CHAPTER 35
Blood Types; Transfusion; Tissue and Organ Transplantation 445
Antigenicity Causes Immune Reactions of Blood 445
O-A-B Blood Types 445
Rh Blood Types 447
Transplantation of Tissues and Organs 449
UNIT IX
The Nervous System: A. General Principles and Sensory Physiology

CHAPTER 45
Organization of the Nervous System, Basic Functions of Synapses, and Neurotransmitters 543
General Design of the Nervous System 543
Major Levels of Central Nervous System Function 545
Comparison of the Nervous System with a Computer 546
Central Nervous System Synapses 546
Some Special Characteristics of Synaptic Transmission 557

CHAPTER 46
Sensory Receptors, Neuronal Circuits for Processing Information 559
Types of Sensory Receptors and the Stimuli They Detect 559
Transduction of Sensory Stimuli into Nerve Impulses 560
Nerve Fibers That Transmit Different Types of Signals and Their Physiologic Classification 563
Transmission of Signals of Different Intensity in Nerve Tracts—Spatial and Temporal Summation 564
Transmission and Processing of Signals in Neuronal Pools 564
Instability and Stability of Neuronal Circuits 569

CHAPTER 47
Somatic Sensations: I. General Organization, the Tactile and Position Senses 571
Classification of Somatic Senses 571
Detection and Transmission of Tactile Sensations 571
Sensory Pathways for Transmitting Somatic Signals into the Central Nervous System 573
Transmission in the Dorsal Column–Medial Lemniscal System 573
Transmission of Less Critical Sensory Signals in the Anterolateral Pathway 580
Some Special Aspects of Somatosensory Function 581

CHAPTER 48
Somatic Sensations: II. Pain, Headache, and Thermal Sensations 583
Types of Pain and Their Qualities—Fast Pain and Slow Pain 583
Pain Receptors and Their Stimulation 583
Dual Pathways for Transmission of Pain Signals into the Central Nervous System 584
Pain Suppression ("Analgesia") System in the Brain and Spinal Cord 586
Referred Pain 588
Visceral Pain 588
Some Clinical Abnormalities of Pain and Other Somatic Sensations 590
Headache 590
Thermal Sensations 592

UNIT X
The Nervous System: B. The Special Senses

CHAPTER 49
The Eye: I. Optics of Vision 597
Physical Principles of Optics 597
Optics of the Eye 600
Ophthalmoscope 605
Fluid System of the Eye—Intraocular Fluid 606

CHAPTER 50
The Eye: II. Receptor and Neural Function of the Retina 609
Anatomy and Function of the Structural Elements of the Retina 609
Photochemistry of Vision 611
Color Vision 615
Neural Function of the Retina 616

CHAPTER 51
The Eye: III. Central Neurophysiology of Vision 623
Visual Pathways 623
Organization and Function of the Visual Cortex 624
Neuronal Patterns of Stimulation During Analysis of the Visual Image 626
Fields of Vision; Perimetry 627
Eye Movements and Their Control 627
Autonomic Control of Accommodation and Pupillary Aperture 631

CHAPTER 52
The Sense of Hearing 633
Tympanic Membrane and the Ossicular System 633
Cochlea 634
Central Auditory Mechanisms 639
Hearing Abnormalities 642
CHAPTER 53
The Chemical Senses—Taste and Smell 645
Sense of Taste 645
Sense of Smell 648

UNIT XI
The Nervous System: C. Motor and Integrative Neurophysiology

CHAPTER 54
Motor Functions of the Spinal Cord; the Cord Reflexes 655
Organization of the Spinal Cord for Motor Functions 655
Muscle Sensory Receptors—Muscle Spindles and Golgi Tendon Organs—And Their Roles in Muscle Control 657
Flexor Reflex and the Withdrawal Reflexes 661
Crossed Extensor Reflex 663
Reciprocal Inhibition and Reciprocal Innervation 663
Reflexes of Posture and Locomotion 663
Scratch Reflex 664
Spinal Cord Reflexes That Cause Muscle Spasm 664
Autonomic Reflexes in the Spinal Cord 665
Spinal Cord Transection and Spinal Shock 665

CHAPTER 55
Cortical and Brain Stem Control of Motor Function 667
Motor Cortex and Corticospinal Tract 667
Role of the Brain Stem in Controlling Motor Function 673
Vestibular Sensations and Maintenance of Equilibrium 674
Functions of Brain Stem Nuclei in Controlling Subconscious, Stereotyped Movements 678

CHAPTER 56
Contributions of the Cerebellum and Basal Ganglia to Overall Motor Control 681
Cerebellum and Its Motor Functions 681
Basal Ganglia—Their Motor Functions 689
Integration of the Many Parts of the Total Motor Control System 694

CHAPTER 57
Cerebral Cortex, Intellectual Functions of the Brain, Learning, and Memory 697
Physiologic Anatomy of the Cerebral Cortex 697
Functions of Specific Cortical Areas 698

Function of the Brain in Communication—
Language Input and Language Output 703
Function of the Corpus Callosum and Anterior Commissure to Transfer Thoughts, Memories, Training, and Other Information Between the Two Cerebral Hemispheres 704
Thoughts, Consciousness, and Memory 705

CHAPTER 58
Behavioral and Motivational Mechanisms of the Brain—The Limbic System and the Hypothalamus 711
Activating-Driving Systems of the Brain 711
Limbic System 714
Functional Anatomy of the Limbic System; Key Position of the Hypothalamus 714
Hypothalamus, a Major Control Headquarters for the Limbic System 715
Specific Functions of Other Parts of the Limbic System 718

CHAPTER 59
States of Brain Activity—Sleep, Brain Waves, Epilepsy, Psychoses 721
Sleep 721
Epilepsy 725
Psychotic Behavior and Dementia—Roles of Specific Neurotransmitter Systems 726
Schizophrenia—Possible Exaggerated Function of Part of the Dopamine System 727

CHAPTER 60
The Autonomic Nervous System and the Adrenal Medulla 729
General Organization of the Autonomic Nervous System 729
Basic Characteristics of Sympathetic and Parasympathetic Function 731
Autonomic Reflexes 738
Stimulation of Discrete Organs in Some Instances and Mass Stimulation in Other Instances by the Sympathetic and Parasympathetic Systems 738
Pharmacology of the Autonomic Nervous System 739

CHAPTER 61
Cerebral Blood Flow, Cerebrospinal Fluid, and Brain Metabolism 743
Cerebral Blood Flow 743
Cerebrospinal Fluid System 746
Brain Metabolism 749
CHAPTER 71
Dietary Balances; Regulation of Feeding; Obesity and Starvation; Vitamins and Minerals 843
Energy Intake and Output Are Balanced Under Steady-State Conditions 843
Dietary Balances 843
Regulation of Food Intake and Energy Storage 845
Obesity 850
Inanition, Anorexia, and Cachexia 851
Starvation 852
Vitamins 852
Mineral Metabolism 855

CHAPTER 72
Energetics and Metabolic Rate 859
Adenosine Triphosphate (ATP) Functions as an "Energy Currency" in Metabolism 859
Control of Energy Release in the Cell 861
Metabolic Rate 862
Energy Metabolism—Factors That Influence Energy Output 863

CHAPTER 73
Body Temperature Regulation, and Fever 867
Normal Body Temperatures 867
Body Temperature Is Controlled by Balancing Heat Production and Heat Loss 867
Regulation of Body Temperature—Role of the Hypothalamus 871
Abnormalities of Body Temperature Regulation 875

UNIT XIV
Endocrinology and Reproduction

CHAPTER 74
Introduction to Endocrinology 881
Coordination of Body Functions by Chemical Messengers 881
Chemical Structure and Synthesis of Hormones 881
Hormone Secretion, Transport, and Clearance from the Blood 884
Mechanisms of Action of Hormones 886
Measurement of Hormone Concentrations in the Blood 891

CHAPTER 75
Pituitary Hormones and Their Control by the Hypothalamus 895
Pituitary Gland and Its Relation to the Hypothalamus 895
Hypothalamus Controls Pituitary Secretion 897
Physiological Functions of Growth Hormone 898
Posterior Pituitary Gland and Its Relation to the Hypothalamus 904

CHAPTER 76
Thyroid Metabolic Hormones 907
Synthesis and Secretion of the Thyroid Metabolic Hormones 907
Physiological Functions of the Thyroid Hormones 910
Regulation of Thyroid Hormone Secretion 914
Diseases of the Thyroid 916

CHAPTER 77
Adrenocortical Hormones 921
Synthesis and Secretion of Adrenocortical Hormones 921
Functions of the Mineralocorticoids—Aldosterone 924
Functions of the Glucocorticoids 928
Adrenal Androgens 934
Abnormalities of Adrenocortical Secretion 934

CHAPTER 78
Insulin, Glucagon, and Diabetes Mellitus 939
Insulin and Its Metabolic Effects 939
Glucagon and Its Functions 947
Somatostatin Inhibits Glucagon and Insulin Secretion 949
Summary of Blood Glucose Regulation 949
Diabetes Mellitus 950

CHAPTER 79
Parathyroid Hormone, Calcitonin, Calcium and Phosphate Metabolism, Vitamin D, Bone, and Teeth 955
Overview of Calcium and Phosphate Regulation in the Extracellular Fluid and Plasma 955
Bone and Its Relation to Extracellular Calcium and Phosphate 957
Vitamin D 960
Parathyroid Hormone 962
Calcitonin 966
Summary of Control of Calcium Ion Concentration 966